

Administration of BPX-501 Cells Following α/β T-cell and B-cell-Depleted HLA-Haploidentical HSCT (haplo-HSCT) in Children with Primary Immunodeficiencies

Daria Pagliara¹, Alice Bertaina^{1,2}, Mary Slatter³, Neena Kapoor⁴, Lakshmanan Krishnamurti⁵, Waseem Qasim⁶, Swati Naik⁷, Victor M. Aquino⁸, Susanne Baumeister⁹, Ann Woolfrey¹⁰, Paul Woodard¹¹, Franco Locatelli¹

¹Ospedale Pediatrico Bambino Gesu, Rome, Italy, ²Lucille Packard Children's Hospital, Palo Alto, CA, USA, ³Great North Children's Hospital, Newcastle, United Kingdom, ⁴Children's Hospital of Los Angeles, Los Angeles, CA, USA ⁵Children's Hospital of Atlanta, Atlanta, GA, USA, ⁶Great Ormond Street Hospital, London, United Kingdom, ⁷Texas Children's Hospital, Houston, TX, USA, ⁸UT Southwestern, Dallas, TX, USA, ⁹Dana Farber Cancer Institute, Boston, MA, USA, ¹⁰Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ¹¹Bellicum Pharmaceuticals Inc., Houston, TX, USA

Disclosures

Daria Pagliara

No disclosures

Lakshmanan Krishnamurti

No disclosures

Susanne Baumeister

No disclosures

Alice Bertaina

No disclosures

Waseem Qasim

Trial research funding from Bellicum, Servier; equity in Autolus, Orchard

Ann Woolfrey

No disclosures

Mary Slatter No disclosures

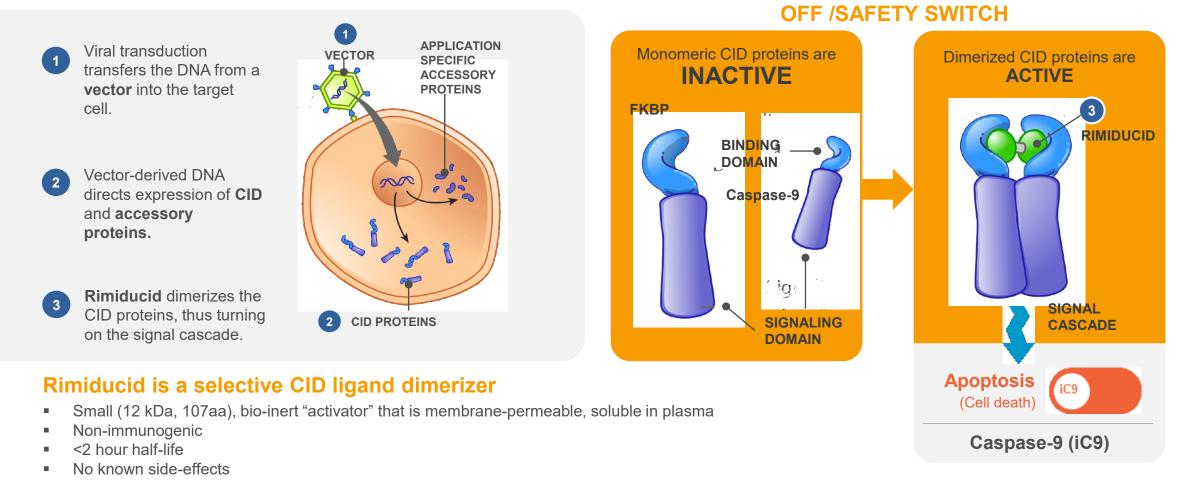
Swati Naik No disclosures

Paul Woodard Employee of Bellicum Neena Kapoor No disclosures

Victor M. Aquino No disclosures

Franco Locatelli Advisory Board, Bellicum

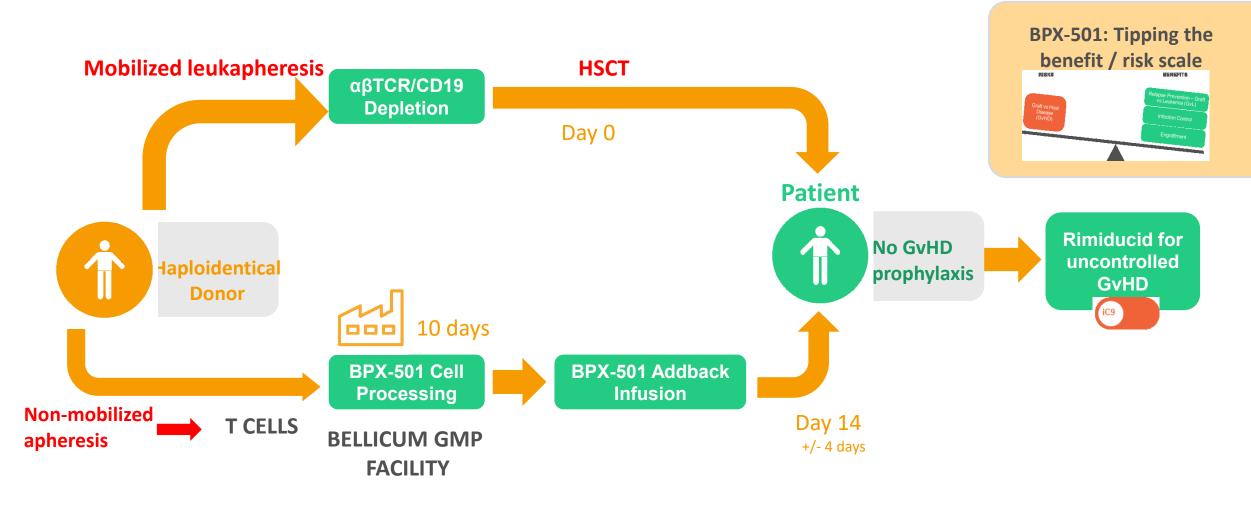
Background


BPX-501 T-cells in children with primary immunodeficiencies

- Allogeneic HSCT is a well-established treatment for children with a wide range of primary immunodeficiencies (PIDs)
- Approximately 25% of patients have a HLA-matched sibling and ~50% have a suitable matched unrelated donor, leaving ~25% of patients who require an alternative donor.
- HLA-partially matched (haploidentical, haplo) donors represent a suitable alternative option for children who lack a matched donor
 - However, extensive T-cell depletion of the graft is required to minimize the risk of graft-vs-host disease (GvHD)
- BPX-501 is a polyclonal donor T cell product derived from haplo-donors engineered to include an inducible 'Safety Switch', offering the benefits of T cells in facilitating engraftment and preventing infections, with the unique ability to promptly and durably resolve GvHD symptoms
- The objectives of this Phase 1/2 study are to evaluate the safety and efficacy of BPX-501 T-cells administered after a T-cell receptor $\alpha\beta$ and B-cell depleted haplo-HSCT in pediatric patients with PIDs

Bellicum's iCaspase-9 safety switch controls GvHD

The chemical induction dimerization (CID) switch controls GvHD through infusion of a selective dimerizing ligand (rimiducid) which activates cell signalling that leads to apoptosis



Bellicum

4

BPX-501 addresses the "T-cell dilemma" in Haplo-HSCT

Study Schema

Pediatric Ph1/2 trial design

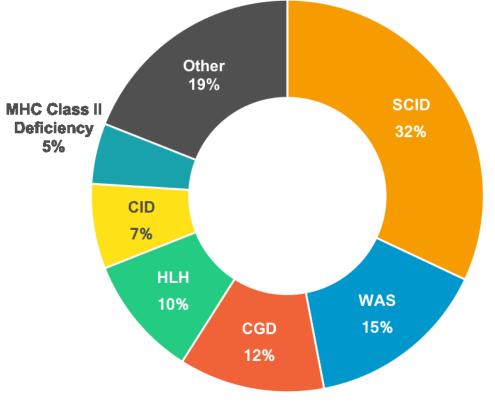
Multicenter study of gene modified donor T-cells following TCR $\alpha\beta$ depleted stem cell transplant

Outcomes αβ T-cell and B-cell depleted **Rimiducid** for patients **Pediatric high-risk** Haplo-HSCT Event-free survival who develop GvHD or malignancies and non-malignant are refractory to SOC Transplant related mortality **BPX-501¹** disorders (non-malignant) treatment (NO post-HSCT GvHD prophylaxis) Non relapse mortality (malignant) No matched donor or urgent need of an Incidence and severity of GvHD allograft Phase I: 3+3 design (no MTD reached) Time to resolution of GvHD after administration of rimiducid Haploidentical donor 2.5x10⁵, 5x10⁵, 1x10⁶ BPX-501 T-cells/kg (no DLTs observed) available Immune reconstitution Phase II: 1x10⁶ BPX-501 T-cells/kg (chosen for further evaluation)

KEY INCLUSION CRITERIA

- Life-threatening acute leukemia or myelodysplastic syndrome
- Non-malignant disorder deemed curable by HSCT
- Life expectancy > 10 weeks
- Age < 18 years and > 1 month

KEY EXCLUSION CRITERIA


- Active GvHD or immunosuppressive treatment from a previous allograft
- Renal or liver dysfunction
- Active infection
- Pregnant or breast feeding

PATIENT POPULATION

AGE, MEDIAN (RANGE) **1.85 (0.21-17.55)**

Other diagnoses (N=1 each): XIAP-deficiency; IL-2 Receptor Deficiency; IFNgamma-receptor 1 deficiency; IL-10 RB deficiency; Partial complement C4 deficiency with multiple autoimmune manifestations; CD40 Ligand deficiency; IKBetaAlfa gain of function mutation; Dock 8 deficiency; Severe congenital neutropenia; Hyper IgM syndrome, Hyper IgD syndrome

MALE (%)

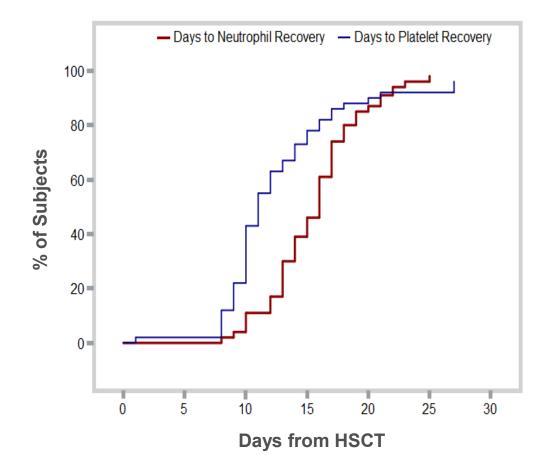
57.6%

Transplant characteristics

CHARACTERISTIC	N=59
Conditioning regimen	
Treosulfan-based	29 (49.2%)
Busulfan-based	23 (39.0%)
Other	7 (11.9%)
Median CD34 dose x 10 ⁶ /kg (range)	22.0 (3.0-57.0)
Median αβ T-cell dose x 10⁵/kg (range)	0.4 (0.01-1.0)
Donor age in years (range)	34 (21-52)
Type of donor	
Parent	56 (94.9%)
Sibling	3 (5.1%)
Time to BPX-501 infusion in days (range)	15 (11-56)
Time to discharge in days (range)	40 (18-204)
Median follow-up in days (range)	536 (32-1252)

Safety

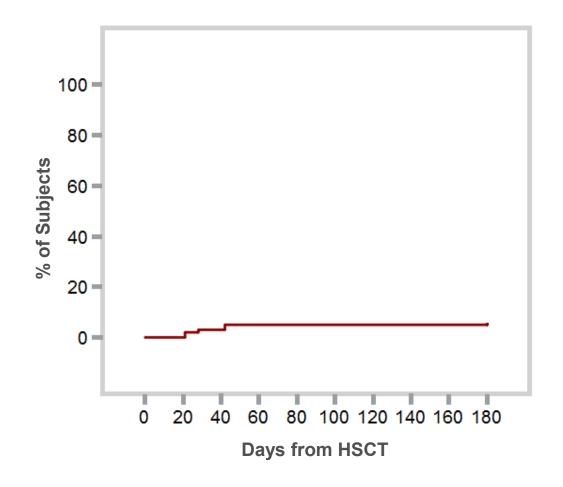
15.2% (9 patients) experienced ≥1 adverse event (AE)


AEs occurring after BPX-501 cells were limited to Grade 1-2

Preferred terms included: Diarrhoea, Vomiting, Pyrexia, Cytomegalovirus viraemia (2), Rhinovirus infection, Hypokalaemia, Pruritus, Rash No SAEs attributed to BPX-501 were reported in this cohort BPX-501 T-cells were well tolerated

Neutrophil and platelet recovery

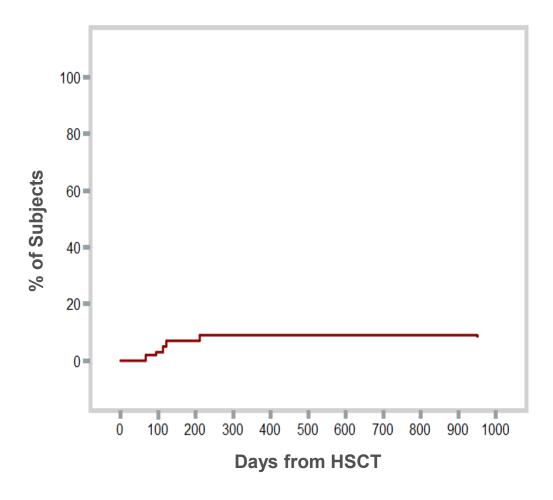
Rapid neutrophil and platelet recovery



Neutrophil & platelet recovery were rapid **Median neutrophil** engraftment: 16 days (95% CI, 14-17) Median platelet engraftment: 11 days (95% CI, 10-12) Only 1 subject received G-CSF Median follow-up: 536 days (32-1252 days)

Graft failure

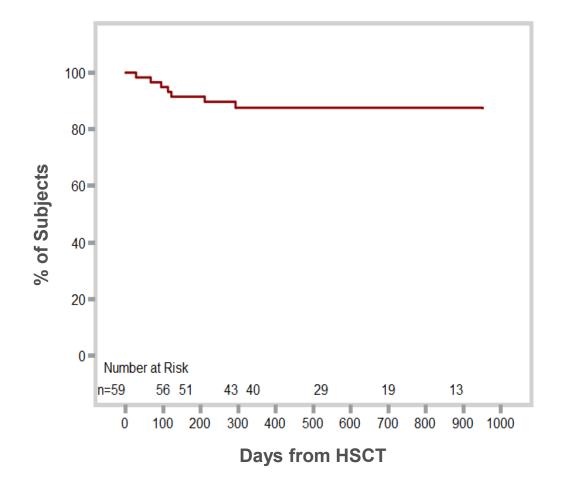
Low graft failure rate at 5.1%


Graft failure rate: 5.1% (95% CI, 0.0-10.7)

1 of 3 patients were successfully re-transplanted

Cumulative incidence of transplant-related mortality (TRM)

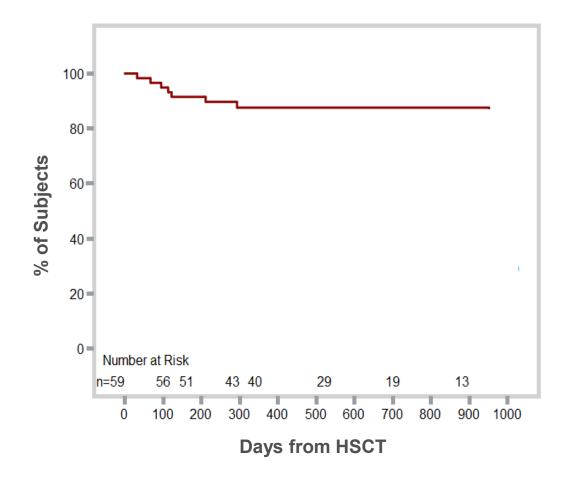
Low TRM incidence of 8.7%


Transplant-related mortality: 8.7% (95% CI, 1.4-16.0)

5 cases of TRM:

- Graft failure/disseminated fungal infection
- CMV encephalitis
- Worsening juvenile dermatomyositis/macrophage activation syndrome
- Bronchopulmonary hemorrhage
- CMV and adenovirus infection/respiratory failure

Disease-free survival (DFS)

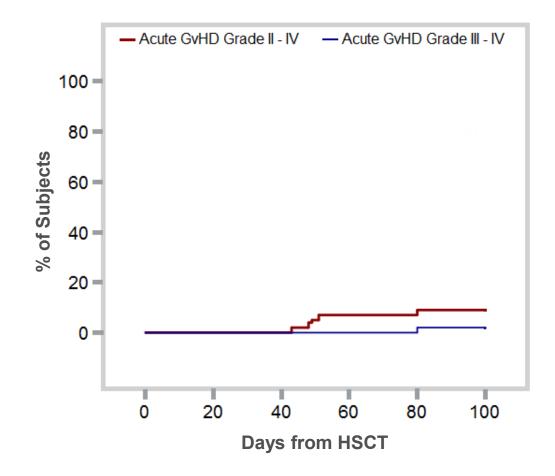

Disease-free survival: 87.6% (95% CI, 79.0-96.3)

Events:

- Graft failure without successful re-transplantation (1)
- Graft failure with death due to disseminated fungal infection (1)
- Other grade 5 events (1 each):
 - CMV encephalitis
 - Worsening juvenile dermatomyositis/macrophage activation syndrome
 - Refractory HLH
 - Bronchopulmonary hemorrhage
 - Respiratory failure

Overall survival (OS)

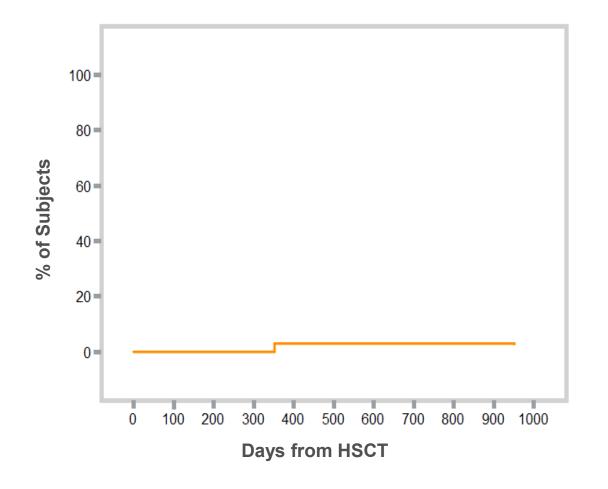
Median follow-up: 536 days (Range, 32 – 1252 days)



Overall survival: 87.6% (95% CI, 79.0-96.3)

Acute GvHD

Low rates of acute GvHD Grade II-IV and Grade III-IV (first 100 days)



Grade II-IV: 8.9% (95% CI, 1.5-16.4) Grade III-IV: 1.8% (95% CI, 0.0-5.3) Cases of acute GvHD within 100 days included: Grade II (n=4) Stage 3 skin (n=3) Stage 1 upper GI (n=1) Grade III (n=1) Stage 3 liver

Cumulative incidence of chronic GvHD

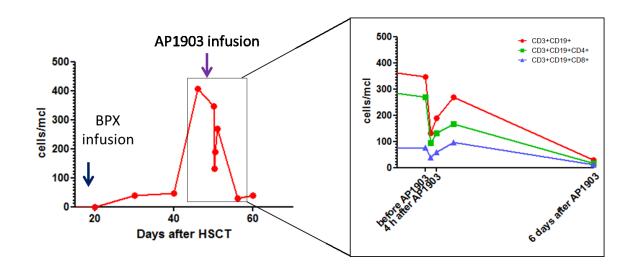
Low rates of chronic GvHD were observed

cGvHD rate: 3.0% (95% CI, 0.0-8.9)

1 case of moderate skin cGvHD; rimiducid was not administered

Response to rimiducid

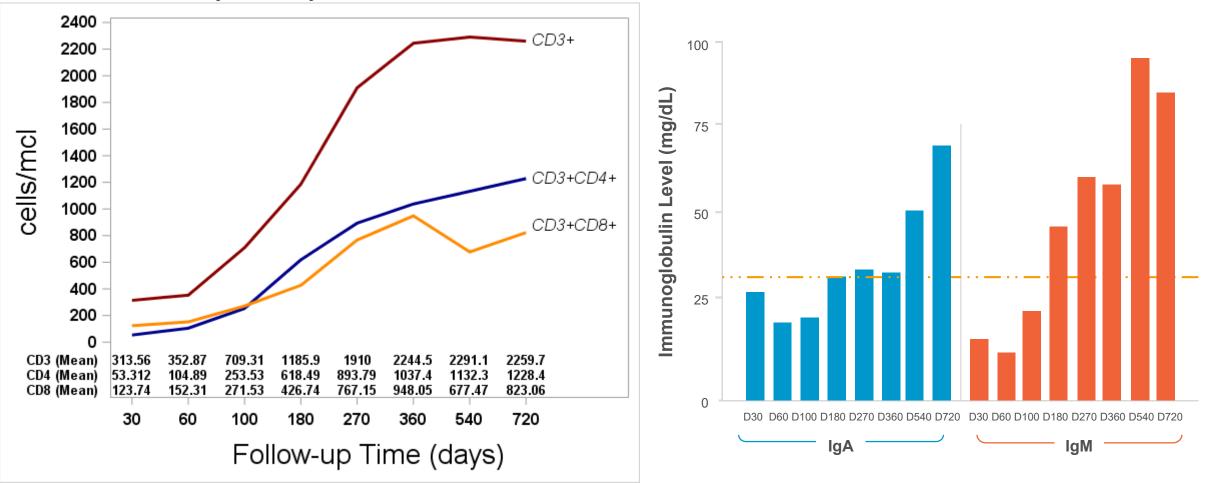
Of the 19 patients who developed aGvHD, 7 received ≥ 1 dose of rimiducid for aGvHD not responsive to standard of care treatment or for visceral involvement


>80% response rate in evaluable PID patients (5 of 6)

OVERALL	STAGE	RESPONSE
Grade I	Stage 1 skin	CR
Grade I	Stage 2 skin	PR
Grade II	Stage 3 skin	CR
Grade II	Stage 1 upper GI	CR
Grade II	Stage 3 skin	NE*
Grade III	Stage 3 liver	CR
Grade III	Stage 3 liver	NR

Rimiducid (AP1903) use

	aGVHD, grade	Response
Patient 1	Skin, II	Complete




Immune recovery

Immune recovery: CD3 T-cell count > 500 cells/ μ l achieved by 100 days and normal levels of IgA and IgM was achieved by 180 days

Immune recovery

BPX-501 engraftment after HSCT

Mean BPX-501 cell counts exceed 100 cells/mcl by day 100

Increased number of BPX-501 cells observed in patients that experienced CMV reactivation

Summary

 α/β T-cell and B-cell depleted haploidentical **HSCT** followed by infusion of BPX-501 cells is a novel and highly effective transplantation strategy for children with a wide range of primary immunodeficiencies lacking a suitable **HLA-compatible donor**

- Disease-free survival and overall survival (87.6% and 87.6%, respectively) compare favourably with data reported using matched unrelated donors
- The cumulative incidence of severe acute (grade III-IV) (1.8%) in the first 100 days and chronic GvHD (3.0%) was low compared to other transplant methods
- >80% of patients with treatment resistant acute GvHD responded after administration of rimiducid
- CD3+ T-cells, IgA and IgM achieved normal levels by 180 days post HSCT
- BPX-501 T-cells expand over-time and persist post infusion through all timepoints, the main driver for BPX-501 T-cell expansion being represented by CMV infection

Acknowledgements

The study investigators and Bellicum would like to thank the patients and their families for participation in our clinical trials

